BTK: sensing pathogenic nucleic acids

نویسندگان

  • Koon-Guan Lee
  • Kong-Peng Lam
چکیده

We are under constant threats from pathogens. A failure to initiate an appropriate immune response will lead to an immunocompromised state. Our innate immune system could sense foreign nucleic acids from parasites, viruses, fungi and bacteria. This is achieved through pattern recognition receptors (PRRs) on innate cells such as macrophages that recognise different pathogen-associated molecular patterns including those found on foreign nucleic acids. Viral double-stranded RNA (dsRNA) in particular are recognised by PRRs such as endosomal Toll-like receptor (TLR)-3 and cytosolic RIG-I-like receptors (RLRs), RIG-I. Long dsRNA binds to TLR3 leading to receptor dimerization and phosphorylation of two tyrosine residues in its intracellular domain, Tyr759 and Tyr858 [1]. TRIF adaptor downstream of TLR3 subsequently recruits TBK1 to activate Interferon regulatory factor (IRF) 3. PI3K is reported to bind to phosphorylated TLR3 at Tyr759 [1] and activate downstream AKT for signaling to IRF3 as well. In addition, RIP1 binds to the C-terminus of TRIF to activate NFκB signaling. Finally, MAP kinases are phosphorylated downstream of TRIF for AP-1 signaling and together with NFκb and IRF3 transcription factors, cooperatively activate Type 1 IFN production, particularly IFN-β, critical for antiviral response [2]. Since TLR3 signaling is complex, we hypothesized that more molecules could be involved. Bruton's tyrosine kinase (BTK) is critical for B cell development and mutations in BTK leads to X-linked agammaglobulinaemia (XLA) in humans and X-linked immunodeficiency in mice [3]. XLA patients were also observed to develop recurrent bacterial and viral infections suggesting a possible role for BTK in innate immunity. Indeed BTK were found to be activated by several TLRs that signal through the adaptor MyD88 [4]. TLR3 signaling is unique as it strictly uses only the TRIF adaptor, and hence presented a good system to examine if BTK plays a role in TRIF-signaling [5]. We found D-galactosamine sensitised BTK knockout mice to survive better than wildtype mice when challenged with poly(I:C). Ex vivo experiments using macrophages from wildtype and btk-/-mice stimulated with naked poly(I:C) revealed that the production of inflammatory cytokines and IFN-β were defective in the absence of BTK. To corroborate this finding, we further infected wildtype and btk-/-macrophages with dengue viruses. Consistent with prior observations of the requirement of BTK in TRIF signaling for Type 1 IFN production, dengue virus infected btk-/-macrophages were found to have defective IFN-β mRNA upregulation and unable to clear dengue virus infection. To gain insight into BTK's role in TLR3 signaling, we …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bruton’s Tyrosine Kinase, a Component of B Cell Signaling Pathways, Has Multiple Roles in the Pathogenesis of Lupus

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the loss of adaptive immune tolerance to nucleic acid-containing antigens. The resulting autoantibodies form immune complexes that promote inflammation and tissue damage. Defining the signals that drive pathogenic autoantibody production is an important step in the development of more targeted therapeutic approaches fo...

متن کامل

High Sensitivity Testing Shows Multiclonal Mutations in Patients with CLL Treated with BTK Inhibitor and Lack of Mutations in Ibrutinib-Naive Patients

Background: Patients with chronic lymphocytic leukemia (CLL) that develop resistance to Bruton’s tyrosine kinase (BTK) inhibitors are typically positive for mutations in BTK or phospholipase c gamma 2 (PLCγ2). Mutations in BTK at the C481S hotspot alter the active site of the mutant BTK to the effect that Ibrutinib is reversibly bound. PLCγ2 is downstream of BTK in the B-cell signaling pathway;...

متن کامل

Btk expression is controlled by Oct and BOB.1/OBF.1

BOB.1/OBF.1 is a lymphocyte-restricted transcriptional coactivator. It binds together with the Oct1 and Oct2 transcription factors to DNA and enhances their transactivation potential. Mice deficient for the transcriptional coactivator BOB.1/OBF.1 show several defects in differentiation, function and signaling of B cells. In search of BOB.1/OBF.1 regulated genes we identified Btk--a cytoplasmic ...

متن کامل

Suppression of immune responses by nonimmunogenic oligodeoxynucleotides with high affinity for high-mobility group box proteins (HMGBs).

The activation of innate immune responses by nucleic acids is central to the generation of host responses against pathogens; however, nucleic acids can also trigger the development and/or exacerbation of pathogenic responses such as autoimmunity. We previously demonstrated that the selective activation of nucleic acid-sensing cytosolic and Toll-like receptors is contingent on the promiscuous se...

متن کامل

Biological functions of exopolysaccharides from probiotic bacteria

Probiotic bacteria have the ability to produce exocellular polymers called exopolysaccharides (EPS). It has been suggested that the health benefit of probiotic bacteria can be attributed to the production of EPS. However, the composition, structure and biological functions of EPS may vary depending on the type of microorganism and environmental conditions. Some data suggest that EPS production ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015